Project description
Advancing superintense laser-driven technology and applications
Superintense laser-driven ion acceleration uses ultrashort laser pulses to accelerate ions to extremely high speeds. The ERC-funded ENSURE project aims to achieve groundbreaking advances in the field through a multidisciplinary approach, combining materials engineering, nanotechnology, laser-plasma physics and computational science. The goals include producing nanoengineered targets for optimised ion acceleration, designing laser-ion beams for nuclear and materials engineering applications and conducting engineering-oriented ion acceleration experiments. By addressing crucial challenges, ENSURE will seek to transition laser-driven ion acceleration from fundamental science to realistic engineering applications. The potentially impacted fields include medicine, energy and materials science.
Objective
With the ENSURE project I aim at attaining ground-breaking results in the field of superintense laser-driven ion acceleration, proposing a multidisciplinary research program in which theoretical, numerical and experimental research will be coherently developed in a team integrating in an unprecedented way advanced expertise from materials engineering and nanotechnology, laser-plasma physics, computational science. The aim will be to bring this topic from the realm of fundamental basic science into a subject having realistic engineering applications.
The discovery in 2000 of brilliant, multi-MeV, collimated ion sources from targets irradiated by intense laser pulses stimulated great interest worldwide, due to the ultra-compact spatial scale of the accelerator and ion beam properties. The laser-target system provides unique appealing features to fundamental physics which can be studied in a small lab. At the same time, laser-ion beams could have future potential in many technological areas. This is boosting the development of new labs and facilities all over Europe, but to support these efforts, crucial challenges need to be faced to make these applications a reality.
The goals of ENSURE are: i) design and production of nanoengineered targets, with properties tailored to achieve optimized ion acceleration regimes. This will be pursued exploiting advanced techniques of material science & nanotechnology ii) design of laser-ion beams for novel, key applications in nuclear and materials engineering iii) realization of engineering-oriented ion acceleration experiments, in advanced facilities iv) synergic development of all the required theoretical support for i,ii,iii).
The results of the project can determine a unique impact in the research on laser-driven ion acceleration in Europe, providing new directions to support the attainment, in the next future, of concrete applications of great societal relevance, in medical, energy and materials areas.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences plasma physics
- natural sciences computer and information sciences computational science
- natural sciences physical sciences optics laser physics pulsed lasers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20133 Milano
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.