Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Interfacing spin waves with superconducting quantum circuits for single magnon creation and detection

Objective

The proposed project will experimentally interface ferromagnets with superconducting quantum circuits to study dynamics within the magnet. To this end, magnonic elements made up by thin, structured magnetic films will be strongly coupled to the qubit. Superconducting qubits are ideal detectors due to their quantum limited back-action on the measured object and energy resolution.

Spectroscopy and coherence measurements on the hybrid system will be made in order to address fundamental aspects such as spin wave generation, detection, coherence, or wave propagation down to mK temperatures and at ultra-low power (atto-watts). Amplitude and phase noise of spin wave resonators will be determined. At the final stage of the project, the quantum limited resolution of qubits will facilitate single magnon creation and detection. Quantum states are swapped between qubit and magnon, and superpositioned and entangled states will be explored. Monitoring the qubit response to its magnetic environment the low and high-frequency flux noise spectrum of spin waves will be inferred.

The research methodology employs junctions, resonators, and qubits as research objects and detectors. The samples will be characterized at cryogenic temperatures by transport, magnetometry, resonator and qubit setups. Magnetic materials will be deposited and structured beneath or ontop the superconducting quantum circuits.

Exploring spin wave dynamics in thin films by coupling to a superconducting qubit complements conventional measurement techniques based on photon, electron or neutron scattering methods, which require highly populated excitations. The project connects to and extends research objects of ground-breaking nature to open up new horizons for quantum, magnon and spin electronics. Magnetic material physics is enhanced by new research concepts such as quantum resolved spectroscopy and coherence measurements on intrinsic dynamic states.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-CoG

See all projects funded under this call

Host institution

UNIVERSITY OF GLASGOW
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 879 337,00
Address
UNIVERSITY AVENUE
G12 8QQ Glasgow
United Kingdom

See on map

Region
Scotland West Central Scotland Glasgow City
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 879 337,00

Beneficiaries (2)

My booklet 0 0