Project description
A new approach to electronic structure calculations
Kohn-Sham (KS) density functional theory (DFT) is widely used for electronic structure calculations in computational chemistry and solid-state physics. Despite its computational efficiency, the predictive power of KS DFT is limited when it comes to near-degenerate and strongly-correlated systems. These are crucial for understanding transition metal complexes, stretched chemical bonds, advanced functional materials, and manmade nanostructures. The inadequacies of KS DFT’s approximations in these areas have been a long-standing problem. In this context, the ERC-funded corr-DFT project aims to construct a novel framework for electronic structure calculations at all correlation regimes based on recent formal developments. The goal of this new approach is to remove KS DFT’s intrinsic bias for weak correlation regimes. The results will be validated on benchmark systems.
Objective
By virtue of its computational efficiency, Kohn-Sham (KS) density functional theory (DFT) is the method of choice for the electronic structure calculations in computational chemistry and solid-state physics. Despite its enormous successes, KS DFT’s predictive power and overall usefulness are still hampered by inadequate approximations for near-degenerate and strongly-correlated systems. Crucial examples are transition metal complexes (key for catalysis), stretched chemical bonds (key to predict chemical reactions), technologically advanced functional materials, and manmade nanostructures.
I aim to address these fundamental issues, by constructing a novel framework for electronic structure calculations at all correlation regimes. This new approach is based on recent formal developments from my group, which reproduce key features of strong correlation within KS DFT, without any artificial symmetry breaking. My results on the exact infinite-coupling-strength expansion of KS DFT will be used to endow that theory with many-body properties from the ground up, thereby removing its intrinsic bias for weak correlation regimes.
This requires novel combinations of ideas from three research communities: chemists and physicists that develop approximations for KS DFT, condensed matter physicists that work on strongly-correlated systems using lattice hamiltonians, and mathematicians working on mass transportation theory. The strong-correlation limit of DFT enables these links by defining a natural framework for extending lattice-based results to the real space continuum. On the other hand, this limit has a mathematical structure formally equivalent to the optimal transport problem of mathematics, enabling adaptation of methods and algorithms.
The new approximations will be implemented with the assistance of an industrial partner and validated on representative benchmark chemical and physical systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences quantum physics
- natural sciences biological sciences genetics DNA
- natural sciences biological sciences biochemistry biomolecules
- natural sciences physical sciences condensed matter physics solid-state physics
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1081 HV Amsterdam
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.