Objective
The development of compact, low cost, power efficient, tunable lasers and frequency combs spanning large bandwidths, exhibiting excellent output beam characteristics, such as the ones achieved in solid-state sources, and expanding the wavelength ranges of by typical solid-state materials, will greatly benefit application fields such as optical sensing, spectroscopy, metrology and telecommunications.
In this research program, I propose to study the generation of novel frequencies and frequency combs by stimulated Raman scattering and four-wave mixing in high-contrast waveguides in rare-earth-doped potassium double tungstates materials (RE:KYW) by exploiting both their excellent optical gain properties as well as their large non-linear index of refraction.
We have recently demonstrated an enormous modal gain in an Yb3+:KYW waveguide amplifier (i.e. ~1000 dB/cm) as well as very efficient (>80%) high power (~1.6 W) laser generation in a Tm3+:KYW waveguide, with broad tunability. However, the low-contrast waveguides utilized have a large modal area (>25 um2) and high bend losses. High-contrast waveguides in RE:KYW have negligible bend losses for radii over 5 um. The introduction of a thin metal layer underneath the dielectric core reduces the total bend losses for very sharp bends. The higher field intensity together with the use of resonant structures (i.e. microrings), makes this waveguide platform ideal to study non-linear phenomena.
The great technological challenges lie on the development of very low-loss microring resonators with highly controlled vertical coupling to passive bus waveguides, with the correct chromatic dispersion and very confined modal field and their combination with plasmonics.
A successful development of this technology will pave the road to great scientific advancements as well as a new generation of compact on-chip solid-state laser sources that will open new horizons in the aforementioned application fields.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences inorganic chemistry alkali metals
- natural sciences mathematics pure mathematics geometry
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
7522 NB Enschede
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.