Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Noisy Electromagnetic Fields - A Technological Platform for Chip-to-Chip Communication in the 21st Century

Objective

Wireless Chip-to-Chip (C2C) communication and wireless links between printed circuit boards operating as Multiple Input Multiple Output devices need to become dominant features of future generations of integrated circuits and chip architectures. They will be able to overcome the information bottleneck due to wired connections and will lead the semiconductor industry into a new More-Than-Moore era. Designing the architecture of these wireless C2C networks is, however, impossible today based on standard engineering design tools. Efficient modelling strategies for describing noisy electromagnetic fields in complex environments are necessary for developing these new chip architectures and wireless interconnectors. Device modelling and chip optimization procedures need to be based on the underlying physics for determining the electromagnetic fields, the noise models and complex interference pattern. In addition, they need to take into account input signals of modern communication systems being modulated, coded, noisy and eventually disturbed by other signals and thus extremely complex.
Recent advances both in electrical engineering and mathematical physics make it possible to deliver the breakthroughs necessary to enable this future emerging wireless C2C technology by creating a revolutionary electromagnetic field simulation toolbox. Increasingly sophisticated physical models of wireless interconnects and associated signal processing strategies and new insight into wave modelling in complex environments based on dynamical systems theory and random matrix theory make it possible to envisage wireless communication on a chip level. This opens up completely new pathways for chip design, for carrier frequency ranges as well as for energy efficiency and miniaturisation, which will shape the electronic consumer market in the 21st century.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETOPEN-2014-2015

See all projects funded under this call

Coordinator

THE UNIVERSITY OF NOTTINGHAM
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 851 425,00
Address
University Park
NG7 2RD Nottingham
United Kingdom

See on map

Region
East Midlands (England) Derbyshire and Nottinghamshire Nottingham
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 851 425,00

Participants (6)

My booklet 0 0