Objective
Topological phases arise from a fascinating interplay between quantum mechanics and many-body physics. They exhibit an abundance of extraordinary properties, such as protected edge and surface modes, exotic particle statistics, and non-local correlations. These make them not only scientifically stimulating, but also appealing for ground-breaking future applications, such as quantum computing using non-Abelian systems. Their subtle nature often renders them hard to study theoretically, and even more so to detect and control experimentally. To date, only a small subset of them has been accessed in experiments. The purpose of this research program is to expand the scope of possible realizations of topological quantum matter, and to develop methods to detect, control and manipulate them. Two main research directions will be considered. The first will focus on utilizing defects to synthesize new non-Abelian systems. We will study the mathematical theory describing the defects, starting from microscopic considerations and aiming to achieve a unifying mathematical framework. New non-Abelian phases arising in networks of coupled defects will be explored. Protocols for controlling non-Abelian anyons and zero modes will be developed and optimized, aiming to minimize errors arising from imperfections in physical implementations. The second direction will explore the exciting possibility of inducing topological behaviour in non-equilibrium systems. Periodically driven systems, such as matter interacting with light, can exhibit anomalous topological phenomena with no analogue in static systems, which we intend to reveal and classify. We will study the unique many body physics arising from the interplay of topological Bloch-Floquet band structures, inter-particle interactions, and coupling to the environment. Finally, for both research directions we will consider possible experimental realizations in a variety of solid state and cold atom systems along with designated probes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences electromagnetism and electronics electromagnetism
- natural sciences physical sciences quantum physics
- natural sciences mathematics pure mathematics topology
- natural sciences physical sciences atomic physics
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
32000 Haifa
Israel
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.