Objective
Efficient use of computational resources with a reliable outcome is a definite target in numerical simulations of partial differential equations (PDEs). Although this has been an important subject of numerical analysis and scientific computing for decades, still, surprisingly, often more than 90% of the CPU time in numerical simulations is literally wasted and the accuracy of the final outcome is not guaranteed. The reason is that addressing this complex issue rigorously is extremely challenging, as it stems from linking several rather disconnected domains like modeling, analysis of PDEs, numerical analysis, numerical linear algebra, and scientific computing. The goal of this project is to design novel inexact algebraic and linearization solvers, with each step being adaptively steered by optimal (guaranteed and robust) a posteriori error estimates, thus online interconnecting all parts of the numerical simulation of complex environmental porous media flows. The key novel ingredients will be multilevel algebraic solvers, tailored to porous media simulations, with problem- and discretization-dependent restriction, prolongation, and smoothing, yielding mass balance on all grid levels, accompanied by local adaptive stopping criteria. We shall theoretically prove the convergence of the new algorithms and justify their optimality, with in particular guaranteed (without any unknown constant) error reduction and overall computational load. Implementation into established numerical simulation codes and assessment on renowned academic and industrial benchmarks will consolidate the theoretical results. As a final outcome, the total simulation error will be certified and current computational burden cut by orders of magnitude. This would represent a cardinal technological advance both theoretically as well as practically in urgent environmental applications, namely the nuclear waste storage and the geological sequestration of CO2.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics pure mathematics algebra linear algebra
- natural sciences computer and information sciences computational science
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
78153 Le Chesnay Cedex
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.