Objective
Ultrafast light pulses offer the fascinating opportunity to study system dynamics at ultrashort time scales. Trains of ultrafast light pulses also feature a broad frequency comb structure that has been exploited e.g. in high precision metrology. These characteristics have made ultrafast optics with coherent control techniques a flourishing field in recent years. A rich toolbox has been developed to generate shorter pulses with engineered temporal and spectral properties.
Likewise, exploiting quantum features of light has enabled remarkable progress for the experimental exploration of fundamental physics and has been central to establishing the fields of quantum communication and quantum metrology. This proposal aims to bring together these two vibrant fields with the goal of exploring new capabilities that arise from the interplay of the quantum properties of light at extreme timescales and over extremely broad spectra. Ultrafast quantum pulses feature an inherent non-classical pulse-mode or supermode structure, which is imprinted onto the states in the generation process and is closely related to the entanglement properties between different frequency constituents of the quantum pulses. Harnessing this structure will dramatically enhance quantum channel capacities per signal state, enable precision time-frequency measurements beyond classical boundaries and open new avenues to scalable quantum information processing.
Each partner brings unique expertise from the areas of quantum information, ultrafast and quantum optics, which expands the combined knowledge of the consortium. The partners’ research profiles cover engineered integrated optics with pulsed light, quantum communication systems, coherent control of light matter interaction and continuous variable quantum states. Experience in classical ultrafast pulse-shaping as well as advanced theoretical analysis tools addressing high-dimensional entanglement and multimode photon statistics round out the consortium.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences computer security cryptography
- engineering and technology chemical engineering separation technologies distillation
- natural sciences physical sciences quantum physics quantum optics
- natural sciences physical sciences optics nonlinear optics
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
OX1 2JD Oxford
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.