Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Coevolutionary Policy Search

Project description

Optimising decision-theoretic planning for autonomous agents

Autonomous agents can sense and act in their environment to perform designated tasks without human intervention. In the foreseeable future, they could prove invaluable in homes, factories, e-commerce, high-risk environments and more. Therefore, designing agents that perform reliably in diverse settings is a priority for AI. However, the main challenge is to overcome barriers in formulating an agent’s policy, such as costly policy evaluation that requires multiple trials. Funded by the European research Council, the CoPS project aims to develop a new class of decision-theoretic planning methods that simultaneously optimise policies and the way in which they are evaluated. This approach automatically identifies the best scenarios, thus reducing the need for random sampling.

Objective

I propose to develop a new class of decision-theoretic planning methods that overcome fundamental obstacles to the efficient optimization of autonomous agents. Creating agents that are effective in diverse settings is a key goal of artificial intelligence with enormous potential implications: robotic agents would be invaluable in homes, factories, and high-risk settings; software agents could revolutionize e-commerce, information retrieval, and traffic control.
The main challenge lies in specifying an agent's policy: the behavioral strategy that determines its actions. Since the complexity of realistic tasks makes manual policy construction hopeless, there is great demand for decision-theoretic planning methods that automatically discover good policies. Despite enormous progress, the grand challenge of efficiently discovering effective policies for complex tasks remains unmet.
A fundamental obstacle is the cost of policy evaluation: estimating a policy's quality by averaging performance over multiple trials. This cost grows quickly with increases in task complexity (making trials more expensive) or stochasticity (necessitating more trials).
To address this difficulty, I propose a new approach that simultaneously optimizes both policies and the manner in which those policies are evaluated. The key insight is that, in many tasks, many trials are wasted because they do not elicit the controllable rare events critical for distinguishing between policies. Thus, I will develop methods that leverage coevolution to automatically discover the best events, instead of sampling them randomly.
If successful, this project will greatly improve the efficiency of decision-theoretic planning and, in turn, help realize the potential of autonomous agents. In addition, by automatically identifying the most useful events, the resulting methods will help isolate critical factors in performance and thus yield new insights into what makes decision-theoretic problems hard.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-STG

See all projects funded under this call

Host institution

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 480 632,00
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 480 632,00

Beneficiaries (1)

My booklet 0 0