Project description
Multiparty computation: more accurate and realistic models lead to advanced protocols
Multiparty computation (MPC) enables multiple parties, each with their own private ‘share’ of distributed data, to participate in collaborative computations without revealing that share. In essence, no one has the entire ‘secret’ and it can only be revealed by combining all the pieces together. MPC has advanced significantly in recent years and is increasingly part of commercialised applications. However, MPC theory has lagged behind these developments. The ERC-funded MPCPRO project will advance MPC protocols by developing a pioneering theory for MPC performance protocols based on more realistic and accurate models, using this theory to design a new MPC protocol and extensively testing its limits.
Objective
Multiparty computation (MPC) is a cryptographic technique allowing us to build distributed computer systems for handling confidential data. We can control exactly what information is released from the system, and privacy of the input data is maintained, even if an adversary breaks into several of the machines in the system. The efficiency of MPC protocols has been significantly improved in recent years. There are countless applications and the techniques are just now entering the commercial domain. However, the theory of the area has in several respects failed to keep up with this development, and we are still very far from being able to apply MPC to large-scale applications. In this project, we propose that state of the art for MPC protocols can be dramatically advanced by
1) Developing a completely new theory for the performance of MPC protocols based on a more detailed model that better reflects what happens when protocols are executed on real platforms.
2) Use the new theory to guide development and implementation of new MPC protocols that will perform much better in practice.
3) Explore the limits of what we can achieve by showing new lower bounds for MPC protocols, attacking a number of long-standing open problems. This will enable us to focus our attention to where improvements are possible.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences databases
- social sciences sociology social issues corruption
- natural sciences computer and information sciences computer security cryptography
- natural sciences computer and information sciences data science data mining
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8000 Aarhus C
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.