Project description
Dualities between algebraic and topological structure shed light on formal languages and logic
Dualities are like two diverse ways of looking at the same thing. Many dualities between algebraic and topological structures exist and flipping back and forth between the two ‘views’ has been the source of many breakthroughs in mathematics. The ERC-funded DuaLL project will use these dualities as a tool to advance topics in theoretical computer science. The team will focus on the search for robust extensions of the theory of regular languages and the development of duality theoretic methods for logics with categorical semantics. They will harness tools from Stone duality, including the Jonsson-Tarski canonical extensions and profinite algebra, and from universal algebra and category theory.
Objective
Dualities between algebraic and topological structure are pervasive in mathematics, and toggling back and forth between them has often been associated with important breakthroughs. The main objective of this project is to bring this important tool to bear on a number of subjects in theoretical computer science thereby advancing, systematising, and unifying them.
One subject of focus is the search for robust extensions of the theory of regular languages. A powerful technical tool for classifying regular languages and proving decidability results is Eilenberg-Reiterman theory, which assigns classes of finite monoids or single profinite algebras to classes of languages. Recent results by the PI and her co-authors show that the theory may be seen as a special case of Stone duality for Boolean algebras with operators. We want to:
- Develop an Eilenberg-Reiterman theory beyond regular languages with the goal of obtaining new tools and separation results for Boolean circuit classes, an active area in the search for lower bounds in complexity theory.
-Systematise and advance the search for robust generalisations of regularity to other structures such as infinite words, finite and infinite trees, cost functions, and words with data.
The second subject of focus is the development of duality theoretic methods for logics with categorical semantics. We want to approach the problem incrementally:
- View duality for categorical semantics through a spectrum of intermediate cases going from regular languages over varying alphabets, Ghilardi-Zawadowski duality for finitely presented Heyting algebras, and the Bodirsky-Pinsker topological Birkhoff theorem to Makkai's, Awodey and Forssell's, and Coumans' recent work on first-order logic duality, thus unifying topics in semantics and formal languages.
Our main tools come from Stone duality in various forms including the Jonsson-Tarski canonical extensions and profinite algebra, and from universal algebra and category theory.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences mathematics pure mathematics discrete mathematics mathematical logic
- natural sciences mathematics pure mathematics topology
- natural sciences mathematics pure mathematics algebra
- natural sciences computer and information sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.