Project description
Understanding clonal architecture of the mature brain
The brain is a complex of neuronal and glial cells whose clonal architecture and role in neural circuitry is only partially explored. The ERC-funded BRAINSTRUCT project aims to elucidate aspects of the brain clonal architecture that are essential for neural circuit development, structure, and function, along with the aetiology of neurodevelopmental disorders. The research will employ novel transgenic strategies of simultaneously tracking the lineage of multiple individual neural stem cells within the intact mouse brain. This interdisciplinary approach will uncover how cell interactions and intercellular signals regulate neural stem cell output. The project aims to provide the basis for quantitative analysis of brain development with single-cell resolution technologies.
Objective
The brain is an extraordinary complex assembly of neuronal and glial cells that underpins cognitive functions. How adequate numbers of these cells are generated by neural stem cells in embryonic and early postnatal development and how they distribute and interconnect within brain tissue is still debated. In particular, the potentialities of individual neural stem cells, their potential heterogeneity and the mechanisms regulating their function are still poorly characterized in situ; likewise, the clonal architecture of mature brain tissue and its influence on neural circuitry are only partially explored. Deciphering these aspects is essential to link neural circuit development, structure and function, and to understand the aetiology of neurodevelopmental disorders.
We have recently established transgenic strategies to simultaneously track the lineage of multiple individual neural stem cells in the intact developing brain and experimentally perturb their development. We will use these approaches in combination with recent large-volume imaging methods for high-throughput analysis of individual neural and glial clones in the mouse cortex. This will allow us to assay neural progenitor potentialities and equivalence, characterize developmental changes occurring in the neurogenic niche, describe the clonal organization of the mature cortex and study its link with neural connectivity. To decipher intrinsic and extrinsic mechanisms regulating neural progenitor activity and understand how they produce appropriate numbers of cells, we will assay the outcome of functional perturbations targeting key steps of neural development, introduced in precursors or in their local environment. These experiments will reveal how neural stem cell output might be regulated by cell interactions and intercellular signals. This multidisciplinary project will set the basis for quantitative analysis of brain development with single-cell resolution in normal and pathological conditions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology cognitive neuroscience
- medical and health sciences medical biotechnology cells technologies stem cells
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75006 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.