Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The ABC of Cell Volume Regulation

Project description

A synthetic cell offers cues about cell volume regulation

Maintaining an overall constant cell volume is critical for the function of microbial, animal and plant cells as it influences various biochemical parameters. Cells maintain their volume by regulating the movement of water across their membranes, through the energy-dependent transport of ions and compatible solutes. Moreover, mechanosensitive ion channels sense changes in cell volume and initiate cellular responses to regulate it. Funded by the European Research Council, the ABCvolume project aims to study the mechanisms of cell volume regulation by constructing a synthetic cell that comprises a minimal volume regulatory network. The focus will be on dissecting the involvement of a complex ATP- driven transporter and on the construction of a metabolic network for physicochemical homeostasis.

Objective

Cell volume regulation is crucial for any living cell because changes in volume determine the metabolic activity through e.g. changes in ionic strength, pH, macromolecular crowding and membrane tension. These physical chemical parameters influence interaction rates and affinities of biomolecules, folding rates, and fold stabilities in vivo. Understanding of the underlying volume regulatory mechanisms has immediate application in biotechnology and health, yet these factors are generally ignored in systems analyses of cellular functions.

My team has uncovered a number of mechanisms and insights of cell volume regulation. The next step forward is to elucidate how the components of a cell volume regulatory circuit work together and control the physicochemical conditions of the cell.

I propose construction of a synthetic cell in which an osmoregulatory transporter and mechanosensitive channel form a minimal volume regulatory network. My group has developed the technology to reconstitute membrane proteins into lipid vesicles (synthetic cells). One of the challenges is to incorporate into the vesicles an efficient pathway for ATP production and maintain energy homeostasis while the load on the system varies. We aim to control the transmembrane flux of osmolytes, which requires elucidation of the molecular mechanism of gating of the osmoregulatory transporter. We will focus on the glycine betaine ABC importer, which is one of the most complex transporters known to date with ten distinct protein domains, transiently interacting with each other.

The proposed synthetic metabolic circuit constitutes a fascinating out-of-equilibrium system, allowing us to understand cell volume regulatory mechanisms in a context and at a level of complexity minimally needed for life. Analysis of this circuit will address many outstanding questions and eventually allow us to design more sophisticated vesicular systems with applications, for example as compartmentalized reaction networks.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-ADG

See all projects funded under this call

Host institution

RIJKSUNIVERSITEIT GRONINGEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 247 230,68
Address
Broerstraat 5
9712CP Groningen
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 247 230,68

Beneficiaries (1)

My booklet 0 0