Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Understanding and Designing Novel NanoPores

Objective

Translocation of ions and molecules is ubiquitous in biology and technology. Despite the tremendous amount of technical development, biological systems are still much more sophisticated in exerting exquisite control over active and passive translocation through nanopores in membranes than their existing synthetic mimics. This proposal aims to build novel designer nanopores that can match naturally evolved systems. For this we have to control all three stages of translocation: 1) diffusion and entry into, 2) diffusion in, and 3) exit from the nanopore. To gain fundamental insight into the translocation process we will employ microfluidic channels combined with holographic optical tweezers. Results from the microscale model system will be directly translated to nanoscale pores built with DNA origami nanotechnology. Our microfluidic experiments will automatically track diffusing spherical and non-spherical particles in artificial channels. Facilitated membrane transport will be mimicked by holographic optical tweezers providing full control over the translocation process. We will clarify how translocation depends on particle-particle, particle-channel, and particle-channel-entrance interactions.
The generic principles discovered on the microscale will guide the design of artificial nanopores made by DNA origami self-assembly. Our DNA origami based designer nanopores will lead to a novel class of transporters for molecules, ions, and water through solid-state and lipid membranes. The project will generate a quantitative understanding of membrane transport processes, test existing theoretical models with unprecedented experimental control, and introduce a novel approach to design active and passive nanopores built from DNA.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-CoG

See all projects funded under this call

Host institution

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 936 431,00
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 936 431,00

Beneficiaries (1)

My booklet 0 0