Objective
Holography has paved the way for phase imaging in a variety of wide-field techniques such as optical microscopy. In scanning optical microscopy, however, the serial fashion of image acquisition seems to challenge a direct implementation of traditional holography. Recently, the applicant and supervisors have jointly invented synthetic optical holography (SOH), which is a new holographic modality for fast scanning phase imaging. SOH has already been implemented in scanning near-field microscopy (s-SNOM) (improving imaging speed by a factor of 50 in comparison to standard technology) and in confocal microscopy (enabling optical surface profiling based on the measurement of the optical phase). SOH has great potential for a widespread implementation in diverse scanning microscopy methods, however, the full potential of the method has not been discovered yet.
During the outgoing phase at UIUC, we will develop a totally new imaging modality in Stimulated Raman Scattering (SRS). Namely, we will apply SOH to holographically detect the Raman signal to increase speed and sensitivity of current SRS technology. We will furthermore develop novel holographic schemes for spectroscopic phase imaging. Having tested these novel holographic schemes with existing confocal microscopes during the outgoing phase, we will implement them in near-field microscopes at CIC nanoGUNE during the return phase. The goal is to achieve a technological milestone in near-field microscopy, which is the rapid recording of a near-field image where each pixel contains the local amplitude, phase AND spectral information. This new technology, called rapid hyperspectral nanoimaging, is expected to greatly extend the applicability of near-field microscopy for the chemical and structural identification of biological and nanocomposite samples. Results produced by this work could be directly implemented in near-field microscopes, as well as lead to new commercialization of the SOH method in confocal microscopy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences cell biology
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences physical sciences optics microscopy confocal microscopy
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-GF - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2014
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20018 San Sebastian
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.