Objective
The proposal addresses some of the most pressing topics in optimal control of partial differential equations (PDEs): Non-smooth, non-convex optimal control and computational techniques for feedback control. These two topics will be applied to the large scale optimal control problems for the bidomain equations, which are the established model to describe the electrical activity of the heart. Due to their rich dynamical systems behavior these systems are particularly challenging.
The use of non-smooth functionals is of great practical relevance in many diverse situations. They promote sparsity, and provide a perfect formulation for switching and multi-bang controls, and for the optimal actuator location problem. For inverse problems the case $L^{p}$ with $p\in (0,1)$ is of special statistical importance, and $L^0$ can be the basis of a new formulation for topology optimization problems. But lack of Lipschitz continuity and of convexity are significant obstacles which can only be overcome by the development of new analytical and numerical concepts. The new algorithmic concepts will also be applicable to important non-smooth problems in continuum mechanics, as for instance the quasi-static evolution of fractures.
Closed loop control is of paramount importance due to its {\bf robustness} against system perturbations. Nevertheless, numerical realization of optimal feedback strategies for nonlinear PDEs has barely been touched since the curse of dimensionality makes direct numerical treatment of the Hamilton-Jacobi-Bellman equation unfeasible. We shall therefore develop and analyze suboptimal strategies based on model reduction and interpolation techniques, and on model-predictive control. The availability of boundary and near-to-the boundary measurements together with dynamic observer techniques will allow to test the proposed methods to obtain suboptimal feedback controls for the bidomain equations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences medical biotechnology
- natural sciences mathematics pure mathematics topology
- natural sciences mathematics applied mathematics dynamical systems
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
- social sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
8010 GRAZ
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.