Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Boron-boron multiple bonding

Objective

Multiple bonding between atoms is immensely important to chemistry, biology, physics and their associated industries; multiple bonds are both ubiquitous in everyday products and extremely useful functionalities for effecting chemical transformations. While very common with the elements carbon, nitrogen and oxygen, multiple bonding is in comparison extremely rare with other elements. Multiple bonding between heavier elements of the main group of the periodic table becomes less favourable the heavier the element becomes. However, this does not explain the relative paucity of multiple bonding with boron, which is immediately to carbon's left on the periodic table. In particular, isolable, stable compounds containing multiple bonds between two boron atoms are extremely rare, and until 2007 only a handful of charged examples existed.

A revolution in this field has recently been witnessed with the syntheses of the first neutral compounds with boron-boron double bonds, diborenes, and the first compounds with boron-boron triple bonds, diborynes. The first neutral diborenes were prepared in 2007, however, we have recently developed a number of rational, selective and more general routes to these compounds. The first diboryne compounds were prepared by our group in 2012. The significance of these two families of molecules is not only their unusual multiple bonding but also the extremely high electron density on the boron atoms, an unusual situation for an element that is known for its electron-poor character. This high electron density leads to strong boron-based nucleophilicity and extremely high reduction potentials – both highly novel phenomena.

This proposal aims to: (A) comprehensively explore the syntheses of these unique compounds and the limits thereof, and to (B) exploit the unusual reactivity of these electron-rich boron molecules in synthesis, small-molecule activation and materials science.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-ADG

See all projects funded under this call

Host institution

JULIUS-MAXIMILIANS-UNIVERSITAT WURZBURG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 500 000,00
Address
SANDERRING 2
97070 Wuerzburg
Germany

See on map

Region
Bayern Unterfranken Würzburg, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 500 000,00

Beneficiaries (1)

My booklet 0 0