Objective
The cell is the universal unit of living matter, and there cannot be propagation of life without cell division. DivIDe aims to investigate the mechanisms and principles of cell division and to reproduce them in vitro with synthetic approaches. Crucial to cell division is the mitotic spindle, a structure whose main duty is the separation of chromosomes. The spindle is made of microtubules (MT), molecular motors, and MT-binding factors, some of which show astounding complexity. The mitotic spindle is the one of the cellular structures that best represents the ability of biological matter to self-organize though arrays of dynamic protein-protein interactions. It rapidly assembles when cells enter mitosis, and it disassembles, after sister chromatid separation and mitotic exit. The complexity and dynamic behaviour of the mitotic spindle captures the imagination of synthetic biologists and modellers. These “molecular engineers” try to understand and harness the principles of self-organization to generate new biological structures endowed with the most typical features of biological matter, the ability to harness energy to do mechanical or chemical work. The emerging discipline of synthetic biology aims to bring together modellers, physicists, and chemists, with biochemists, structural biologists and cell biologists. So does DivIDe, which will train a new generation of molecular engineers endowed with a strong basis in quantitative computational and biochemical methods, and therefore capable of addressing cellular and molecular mechanisms. Furthermore, molecular engineering harbours industrial applications, and DivIDe will continuously provide results for potential exploitation by the three SME partners. Training in management skills, conceptual and ethical thinking, communication and networking will complement the scientific offer. In summary, DivIDe will be able to teach an integrated package of skills and will train the molecular biologists of the future.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- natural sciences biological sciences synthetic biology
- natural sciences biological sciences genetics heredity
- natural sciences biological sciences genetics chromosomes
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN-ETN - European Training Networks
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08003 Barcelona
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.