Objective
The adult mammalian stomach can be divided into three distinct parts: From the proximal fore-stomach over the corpus to the distal pylorus. Due to constant exposure to mechanical stress and to hostile contents of the lumen, highly specialized cell types have to be constantly reproduced in order to maintain the function of the gastrointestinal tract. Recently, the applicant identified Troy+ chief cells as a novel stem cell population in the corpus epithelium. Troy+ chief cells displayed a very low proliferation rate indicating their quiescent nature compared to other known gastro-intestinal tract stem cells. Interestingly, these stem cells can actively divide upon tissue damage, suggesting distinctive statuses under conditions of homeostasis and injury.
As Troy+ stomach stem cells exhibit interconvertible characteristics i.e. quiescent and proliferative, they represent a unique model of adult stem cells with which we can study 1) the dynamics of stem cell propagation in homeostasis and regeneration and the underlying mechanism of this switch by analysing molecular and epigenetic profiles. Subsequently, by analysing mRNA expression profiles and epigenetic changes in Troy+ stem cells between homeostasis and injury repair, we will generate a list of genes with potentially interesting functions in cell fate decisions. We will therefore investigate 2) the stomach stem cell programme in homeostasis and regeneration using in vitro and in vivo functional genetics. Lastly, we will characterise 3) human stomach stem cells in normal and pathological conditions.
Here we pursue three main aims:
- Investigating Troy+ stem cell dynamics during homeostasis and injury repair
- Unmasking the stomach stem cell programme using in vitro and in vivo functional genetics
- Characterising human stomach stem cells
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesgenetics
- medical and health sciencesmedical biotechnologycells technologiesstem cells
- medical and health sciencesbasic medicinephysiologyhomeostasis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Topic(s)
Funding Scheme
ERC-STG - Starting GrantHost institution
1030 Wien
Austria