Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

DEVELOPMENT OF A COST EFFECTIVE AND RELIABLE HYDROGEN FUEL CELL VEHICLE REFUELLING SYSTEM

Objective

H2Ref addresses the compression and buffering function for the refuelling of 70 MPa passenger vehicles and encompasses all the necessary activities for advancing a novel hydraulics-based compression and buffering system that is very cost effective and reliable from TRL 3 (experimentally proven concept) to TRL 6 (technology demonstrated in relevant environment), thereby proving highly improved performance and reliability in accordance with the following targets that have been defined considering the intrinsic characteristics of this new solution:
- Throughput: 70 MPa dispensing capacity of 6 to 15 vehicles per hour (i.e. 30 to 75 kg/hr) - depending on the inventory level in source storage of the compressed hydrogen - with a 75 kW power supply;
- Robustness and Reliability: 10 years of operation without significant preventive maintenance requirement, demonstrated through intensive lab test simulating 20 refuellings per day during 10 years, i.e. 72,000 refuellings;
- CAPEX: Manufacturing cost of 300 k€ for the compression and buffering module (CBM) assuming serial production (50 systems/yr). This level of cost for the CBM allows to target a cost of 450 k€ for the complete HRS (including pre-cooling and dispensing), assuming application of the optimized approaches for pre-cooling and dispensing control being developed in the HyTransfer project, far below the current HRS cost of approximately 900 k€;
- Energy efficiency: average consumption for compression below 1.5 kWh/kg of dispensed hydrogen, i.e. 50% below the energy consumption of current systems, in fuelling stations supplied by trailers, which is and will likely remain the most common form of supply.
The knowledge gained will allow subsequent development to focus on optimization of components, of design for manufacturing and maintenance, further demonstration, and the development of a product range for different refuelling station sizes, thus taking this innovation to the market.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

FCH2-RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-JTI-FCH-2014-1

See all projects funded under this call

Coordinator

CENTRE TECHNIQUE DES INDUSTRIES MECANIQUES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 606 894,45
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 214 941,25

Participants (7)

My booklet 0 0