Objective
Multimaterial systems combining metals with thermoplastic fiber reinforced polymer composites (TP-FRPC) are the key for light weight design in the automotive industry. However, the joining of the material partners remains main issue. Currently, no approach exists which sufficiently meets the three core requirements: weight neutrality, cost- and time efficiency and bonding strength. Technologies like adhesive bonding or bolted joints show good results for one or two of the criterions, but not for all three of them.
The FlexHyJoin project aims at the development of a joining process for hybrid components, which satisfies all three criterions. Induction Joining (IJ) and Laser Joining (LJ) are combined, since they have complementary fields of application and most of all they do not require additional material and are therefore weight neutral joining methods. Thus, the full lightweight potential is preserved. Additionally, a surface texturing method for the metal is integrated in the approach, which leads to a form closure bonding, providing a high mechanical bonding performance. Finally, a main aspect of the FlexHyJoin project is to integrate the surface texturing as well as both joining methods in a single, continuous, and fully automatized pilot process with an overall process control and supervision system. This leads to a maximum of time- and cost-efficiency and will allow the future application of the approach in the mass production of automotives. The key for the automation is an online process control and quality assurance.
The FlexHyJoin project provides an essential enabler technology for future mobility concepts. The final result is an innovative joining process for fiber reinforced polymers and metals, suiting the strict requirements of automotive industry and enabling the broad application of hybrid material systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering fibers
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- engineering and technology materials engineering composites
- engineering and technology mechanical engineering vehicle engineering automotive engineering
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.5.1. - Technologies for Factories of the Future
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FoF-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
67663 Kaiserslautern
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.