Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multi-ObjecTive design Optimization of fluid eneRgy machines

Objective

The MOTOR project focuses on ICT-enabled design optimization technologies for fluid energy machines (FEMs) that transfer mechanical energy to and from the fluid, in particular for aircraft engines, ship propellers, water turbines, and screw machines. The performance of these machines essentially depends on the shape of their geometry, which is described by functional free-form surfaces. Even small modifications have significant impact on the performance; hence the design process requires a very accurate representation of the geometry.
Our vision is to link all computational tools involved in the chain of design, simulation and optimization to the same representation of the geometry, thereby reducing the number of approximate conversion steps between different representations. The improved accuracy and reliability of numerical simulations enables the design of more efficient FEMs by effective design optimization methods. MOTOR also exploits the synergies between the design optimization technologies for the different types of FEMs that have so far been developed independently.

MOTOR adopts a modular approach for developing novel methodologies and computational tools and integrating them into real process chains, contributing
• a volumetric mesh generator with exact interface matching for multi-domain geometries enabling high-order multi-physics simulations with enhanced accuracy,
• an isogeometric analysis simulation toolbox for CFD, CSM, and FSI problems and advanced interactive visualization toolkit for high-order solutions, and
• automatic shape optimization based on a multi-level approach in the parameterization enabling different levels of shape variety to combine design space exploration with local searches.

The effectiveness of our approach in terms of reduced time to production and increased efficiency of the optimally designed product will be validated by developing four proof-of-concept demonstrators with the modernized process chains.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FoF-2014-2015

See all projects funded under this call

Coordinator

TECHNISCHE UNIVERSITEIT DELFT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 652 875,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 652 875,00

Participants (10)

My booklet 0 0