Objective
The CREATE project aims to tackle the thermal energy storage challenge for the built environment by developing a compact heat storage. This heat battery allows for better use of available renewables in two ways: 1) bridging the gap between supply and demand of renewables and 2) increasing the efficiency in the energy grid by converting electricity peaks into stored heat to be used later, increasing the energy grid flexibility and giving options for tradability and economic benefits.
The main aim of CREATE is to develop and demonstrate a heat battery, ie an advanced thermal storage system based on Thermo-Chemical Materials, that enables economically affordable, compact and loss-free storage of heat in existing buildings.
The CREATE concept is to develop stabilized storage materials with high storage density, improved stability and low price, and package them in optimized heat exchangers, using optimized storage modules. Full scale demonstration will be done in a real building, with regulatory/normative, economic and market boundaries taken into account. To ensure successful exploitation, the full knowledge, value, and supply chain are mobilized in the present consortium. It will be the game changer in the transformation of our existing building stock towards near-zero energy buildings.
WP1 Management,WP2 Cost Analysis and planning for future commercial products cost,WP3 System definition,design and simulation,WP4 Thermal storage materials optimization (key breakthroughs),WP5 Critical storage components and technology development (key breakthroughs),WP6 Thermal storage reactor design, implementation and test,WP7 System integration, experiments and optimization,WP8 Building integration and full scale demonstration,WP9 Dissemination and exploitation of results.
CREATE will create viable supply chain by bringing together multiple scientific disciplines and industry. In other words, CREATE envisions a multi-scale, multi-disciplinary and multi-stakeholder approach.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energysolar energy
- engineering and technologymechanical engineeringthermodynamic engineeringheat engineering
- engineering and technologymaterials engineeringcomposites
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind power
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Call for proposal
(opens in new window) H2020-EeB-2014-2015
See other projects for this callSub call
H2020-EeB-2015
Funding Scheme
RIA - Research and Innovation actionCoordinator
8200 Gleisdorf
Austria