Project description
Innovative approaches to resource limitations in big graph querying
Query or question answering (extracting information from or acting on data stored in a database) underlies many of today’s modern applications including social media, chatbots and internet search engines. The database is a knowledge graph where the nodes represent data points and the edges are the ‘connections’ between them. Querying multiple databases simultaneously will enhance capabilities, but new approaches are needed. The European Research Council-funded GRACE project intends to develop an innovative graph pattern query language, a revised computational complexity theory, and a formalisation of parallel scalability with the increase in processors. When its new algorithms cannot find exact answers, the team’s approximation schemes will strike a balance between accuracy and cost.
Objective
When we search for a product, can we find, using a single query, top choices ranked by Google and at the same time, recommended by our friends connected on Facebook? Is such a query tractable on the social graph of Facebook, which has over 1.31 billion nodes and 170 billion links? Is it feasible to evaluate such a query if we have bounded resources such as time and computing facilities? These questions are challenging: they demand a departure from the traditional query evaluation paradigm and from the classical computational complexity theory, and call for new resource-constrained methodologies to query big graphs.
This project aims to tackle precisely these challenges, from fundamental problems to practical techniques, using radically new approaches. We will develop a graph pattern query language that allows us to, e.g. unify Web search (via keywords) and social search (via graph patterns), and express graph pattern association rules for social media marketing. We will revise the conventional complexity theory to characterize the tractability of queries on big data, and formalize parallel scalability with the increase of processors. We will also develop algorithmic foundations and resource-constrained techniques for querying big graphs, by ``making big data small''. When exact answers are beyond reach in big graphs, we will develop data-driven and query-driven approximation schemes to strike a balance between the accuracy and cost. As a proof of the theory, we will develop GRACE, a system to answer graph pattern queries on big GRAphs within bounded resourCEs, based on the techniques developed. We envisage that the project will deliver methodological foundations and practical techniques for querying big graphs in general, and for improving search engines and social media marketing in particular. A breakthrough in this subject will advance several fields, including databases, theory of computation, parallel computation and social data analysis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences data science big data
- natural sciences computer and information sciences artificial intelligence computer vision
- natural sciences mathematics pure mathematics discrete mathematics graph theory
- natural sciences computer and information sciences internet world wide web
- natural sciences computer and information sciences databases relational databases
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EH8 9YL Edinburgh
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.