Objective
Advances in biotechnology, pharmaceutical and life sciences require improved performance of even the most powerful analytical techniques to target the extreme complexity of modern biological samples. Due to its high performance, Fourier transform mass spectrometry (FTMS) is the central analytical technique in biomolecular analysis. Fourier transform (FT) drives FTMS by converting the time-domain (transient) data to mass spectra which, in turn, provide the biological information. Although FT is robust, it is inherently slow due to its strict uncertainty principle. Thus, many life sciences applications of FTMS are suffering from a limited throughput – data acquisition in FTMS should be done faster! Recent innovation results of our ERC Starting Grant “Super-resolution mass spectrometry for health and sustainability” have revealed the incredible power that methods of advanced signal processing, whose uncertainty principles are less strict than the FT one, have to offer to the everyday routine high-performance FTMS. Thus, we have rationally implemented existing and developed novel super-resolution and advanced signal processing methods to substantially speed up FTMS. While fundamental and technical feasibilities of our approach have been evaluated favorably at the lab level, turning these research outputs into a commercial proposition is yet to be demonstrated. Therefore, the aim of Time2Life is to translate our technology validated in lab into a robust industry-grade technology that accelerates high-performance biological mass spectrometry via the advanced signal processing of time-domain (transient) data and thus leverages life sciences applications. The industrial and academic end-users would be able to identify and quantify more analytes (e.g. peptides, proteins and metabolites) and thus enhance biological significance and accuracy of their research and clinical work. Notably, we target the unrepresented by SME area of time-domain data analysis in mass spectrometry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- natural sciences physical sciences optics microscopy super resolution microscopy
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences chemical sciences analytical chemistry mass spectrometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC - Proof of Concept Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 Lausanne
Switzerland
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.