Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Add-on module for optical coherence tomography with en-face view option

Objective

By the end of the 4th year of the ERC Advanced grant, the PI has set up the basis of a unique procedure to perform optical coherence tomography (OCT) that is similar in outcome to time domain interferometry but has all advantages of spectral domain interferometry in terms of speed and sensitivity. The new method of OCT, termed as Master/Slave (MS), is characterised by several advantages: direct production of an en-face OCT image, tolerance to dispersion that allows MS-OCT to achieve the theoretical limit of axial resolution and sensitivity that can be tailored for no hardware and time cost, with the axial resolution. By excellence, the Master/Slave OCT method delivers en-face views direct, allowing lower cost hardware and faster provision of en-face slicing and visualisation. An essential advantage is that of parallel processing, that makes MS-OCT, ideally suited to novel parallel optical configurations and graphic processing units (GPU). These advantages can substantially increase the speed in providing volumes of the tissue, making the new OCT method superior to all other methods on the market. The POC support will help advance the MS-OCT closer to commercialisation. Four market strategies are identified with immediate products for the first two. OCT add-on modules, equipped with MS software, for: A. OCT developers, to accelerate their research and B. OCT developers that can modify existing commercial OCT systems, by making them accomplish the MS protocol. The module to be assembled and assessed for commercialisation will also pave the way to two more strategies: C. Companies already selling OCT systems on dedicated markets, where specialised agreements will widen the market and even D. A full OCT system created by the new company, an ultimate outcome that requires investment, based on revenue acquired by selling the add-on modules.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-PoC

See all projects funded under this call

Host institution

UNIVERSITY OF KENT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 149 917,00
Address
THE REGISTRY CANTERBURY
CT2 7NZ Canterbury, Kent
United Kingdom

See on map

Region
South East (England) Kent East Kent
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 149 917,00

Beneficiaries (1)

My booklet 0 0