Objective
GASERA, a high tech Finnish SME, aims to develop and commercialise the IRON handheld device for sub-parts per billion (ppb) gas detection based on proprietary mid-infrared laser spectroscopy combined with novel patented photoacoustic technology. The transitioning of its technology from fixed mount analysers to portable and handheld instruments, motivated by the strong need for portable analysers for toxic gases and air pollutants in several application fields with laboratory grade performance, will enable access to new markets. Existing technologies have limitations in terms of size, performance, versatility and/or usability. A miniaturized detector that offers both sensitivity and selectivity would enable a plethora of new applications (cargo container safety, indoor air quality monitoring, hidden person detection, explosives and narcotics detection, occupational safety, odour analysis, unknown chemicals identification, etc.) unlocking the floodgates to a multimillion euro business opportunity in the growing green economy, whereby there is increasing concern over the impacts of air pollution and air quality in the EU.
Our first target application of fumigants and toxic industrial chemical measurement in cargo containers will generate ~ € 42.3 M in sales by 2023 and will enable ~38 high-end jobs to be created in Gasera. IRON will respond to growing demand for affordable, rapid, sensitive and selective instruments to enable on-site detection of hazardous chemicals in cargo containers and prevent worker exposure to the harmful volatile chemicals caused by fumigants and off-gassing of freight. The current lack of technology places dockworkers, container unloaders and consumers at risk of carcinogenic or toxic gases, many of which elude subjective detection. IRON will have the required sensitivity, selectivity and speed for providing quick, accurate and reliable readings of the type and quantity of chemicals inside to enable safe handling of contaminated containers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences software
- engineering and technology environmental engineering air pollution engineering
- medical and health sciences health sciences public health occupational health
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.5. - SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-2 - SME instrument phase 2
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SMEInst-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20520 Turku
Finland
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.