Project description
Neuronal birthdate and brain function
The hippocampus is a complex part of the brain that plays a central role in learning and memory formation as well as spatiotemporal cognition. Hippocampal activity and dynamics is an area of active interest and research. Funded by the European Research Council, the NeuroPioneers project is working under the hypothesis that the timing of neuron birth during development is an important factor in determining the function of these neurons in adulthood. Researchers will employ a multidisciplinary approach to investigate how highly active neurons in the mouse brain contribute to brain neuronal network dynamics. Findings will provide fundamental insight into brain function with ramifications for neurological disorders including Alzheimer's disease.
Objective
Most adult cortical dynamics are dominated by a minority of highly active neurons distributed within a silent neuronal mass. If cortical spikes are sparse, spiking of single distinct neurons can impact on network dynamics and drive an animal’s behavior. It is thus essential to understand whether this active and powerful minority is predetermined and if true to uncover the rules by which it is set during development. I hypothesize that birthdate is a critical determinant of neuronal network function into adulthood. More specifically, I reason that neurons that are born the earliest are primed to participate into adult network dynamics. The goal of this proposal is to challenge this original hypothesis, which is considerably fed by our past work aiming at understanding how cortical networks function and assemble during development. Hence, we have shown that an early birthdate: (1) specifies the specialization of GABA neurons with a hub function, that orchestrate perinatal network dynamics in the mouse hippocampus (Bonifazi et al. 2009) and develop into long-range projecting GABA neurons into adulthood (Picardo et al. 2011); (2) delineates a subtype of CA3 glutamate neuron with a “pacemaker” function in the absence of fast GABAergic transmission (Marissal et al. 2012). We will analyze the structure and function of early born GABA and glutamate neurons, in the adult mouse hippocampus, mainly in vivo, where the extensive and long-range connectivity of these cells is preserved. To this aim, we have translated from the in vitro to the in vivo situation, our multidisciplinary method to investigate structure-dynamics relationship in cortical networks. Using this approach, we have recently shown that, in the absence of external landmarks, distance is encoded within the hippocampus in recurrent and self-circumscribed sequences of neuronal activation. Our proposal will specifically examine the recruitment of early born neurons in this sparse network dynamics pattern.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology
- medical and health sciences basic medicine neurology epilepsy
- natural sciences biological sciences developmental biology
- medical and health sciences basic medicine pathology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75654 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.