Objective
Understanding the quantum many-particle problem is one of the grand challenges of modern physics. While
tremendous progresses have been made over the past decades in thermodynamic equilibrium, nonequilibrium
many-body quantum physics is still in its infancy. Strong motivation for addressing this
challenge comes from recent experimental developments in diverse areas, ranging from cold atomic gases
over light-driven semiconductors to microcavity arrays. This moves systems into the focus, which are
located on the interface of quantum optics, many-body physics and statistical mechanics. They share in
common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating
scenarios without immediate counterpart in traditional condensed matter systems. This project has the goal of
pushing forward the understanding of such driven open quantum systems.
To this end, we follow a combined approach structured around three key challenges. (i) We aim to identify
novel macroscopic phenomena, which manifestly witness microscopic non-equilibrium conditions. This
concerns non-thermal stationary states, where we will shape an understanding of non-equilibrium phase
diagrams and the associated phase transitions, in particular constructing a notion of driven quantum
criticality. But it also encompasses the identification of new universal regimes in open system time
evolution. Finally, we will extend the concept of topological order to a broader non-equilibrium context,
motivated by quantum information applications. (ii) We will create new theoretical tools, in particular
advancing a flexible Keldysh dynamical quantum field theory for driven open quantum systems. (iii) We will
address a broad spectrum of cutting edge experimental platforms in view of exploring our theoretical
scenarios, and to foster mutual cross-fertilization. With an emphasis on cold atomic gases, this program also
comprises exciton-polariton condensates and coupled circuit QED architectures.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences theoretical physics particle physics fermions
- natural sciences physical sciences quantum physics quantum field theory
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences physical sciences classical mechanics statistical mechanics
- natural sciences physical sciences quantum physics quantum optics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-CoG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
50931 KOLN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.