Objective
Autism Spectrum Conditions (ASC, frequently defined as ASD - Autism Spectrum Disorders) are neurodevelopmental conditions, characterized by social communication difficulties and restricted and repetitive behaviour patterns. There are over 5 million people with autism in Europe – around 1 in every 100 people, affecting lives of over 20 million people each day. Alongside their difficulties, individuals with ASC tend to have intact and sometimes superior abilities to comprehend and manipulate closed, rule-based, predictable systems, such as robot-based technology.
Over the last couple of years, this has led to several attempts to teach emotion recognition and expression to individuals with ASC, using humanoid robots. This has been shown to be very effective as an integral part of the psychoeducational therapy for children with ASC. The main reason for this is that humanoid robots are perceived by children with autism as being more predictable, less complicated, less threatening, and more comfortable to communicate with than humans, with all their complex and frightening subtleties and nuances.
The proposed project aims to create and evaluate the effectiveness of such a robot-based technology, directed for children with ASC. This technology will enable to realise robust, context-sensitive (such as user- and culture-specific), multimodal (including facial, bodily, vocal and verbal cues) and naturalistic human-robot interaction (HRI) aimed at enhancing the social imagination skills of children with autism. The proposed will include the design of effective and user-adaptable robot behaviours for the target user group, leading to more personalised and effective therapies than previously realised. Carers will be offered their own supportive environment, including professional information, reports of child’s progress and use of the system and forums for parents and therapists.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringroboticsautonomous robots
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
7522 NB Enschede
Netherlands