Objective
HELIOtube aims at demonstrating a cheaper and less resource intensive collector technology for Concentrated Solar Power (CSP) plants setting the new gold standard for a power plant carbon footprint. Conventional technologies (parabolic troughs, Tower, Linear Fresnel, Parabolic Dish) are resource and energy intensive in construction, logistics and installation, leading to high costs and negative environmental impacts.
HELIOVIS developed a lightweight pneumatic technology for solar concentrators which allows 55% cost savings and 40% CO2 reduction compared to the best future parabolic trough technologies. The HELIOtube is an inflatable cylindrical concentrator made of plastic films. Its full scale/commercial size is 220m long with a diameter of 9m. It can concentrate light by a factor of 100 and heats the thermal receiver fluid to a temperature of 400 to 600° C, enough to provide steam to turbines for electricity generation. HELIOtubes will be manufactured by a fully automated roll-to-roll process and in large
quantities from commercially available recyclable plastic films (instead of the current steel-and-glass based technologies).
The rolled HELIOtube can be transported in a standard container (simple logistics) and will be inflated at the site designated for the power plant. This offers significant competitive advantages in materials, production, logistics, and installation costs.
The project objective is to design, deploy and run a large scale pilot in Spain, including the in-field test of transport and installation logistic operations. This demo will lead to the qualification necessary for commercialization. The project main proponent is the Austrian company HELIOVIS AG, holding the patents and the innovative know-how on the collector, that will work in collaboration with the German company MachtWissen, expert in widn protections engineering and production of components for solar thermal energy plants. HELIOtube will span 2 years with a budget of 3.5ML eur
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power generation
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
- engineering and technology environmental engineering energy and fuels renewable energy solar energy solar thermal
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
- engineering and technology environmental engineering energy and fuels renewable energy solar energy concentrated solar power
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-2 - SME instrument phase 2
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SMEInst-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2351 WIEN
Austria
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.