Objective
The vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. They provide one of the most sensitive tests of when baryonic structure formation began in the Universe. These compact matter laboratories also unravel the mass-loss in the post-main-sequence evolution and establish critical constraints for galactic evolution models. I will design a robust theoretical framework to shed new light on the interior structure of white dwarfs, associate them with their progenitor stars, and enhance their potential as probes of fundamental astrophysical relations. I have recently computed the first 3D simulations of pure-hydrogen white dwarf atmospheres including full radiation-hydrodynamics. These improved calculations demonstrate that the widely used 1D model atmospheres are unable to correctly solve the thermodynamic stratification of convective layers, and therefore lead to incorrect masses and cooling ages. My ambitious goal is to expand the 3D simulations to stellar remnants of all atmospheric compositions and connect these surface calculations to interior structure models. The project is timely since my improved theoretical tools will be essential to analyse the forthcoming Gaia sample, where the number of known white dwarfs is expected to increase by a factor of ten. I will use my theoretical framework with Gaia data, supplemented by other surveys and dedicated follow-up observations, to extract an unprecedented wealth of information from white dwarfs. I will set the standards for the star formation history and initial mass function in the Milky Way, as well as constrain the fundamental mass-radius relation for white dwarfs. I will also study evolved planetary systems that are currently being accreted in the convection zone of their white dwarf hosts, providing direct and unique insight into the bulk composition of exo-terrestrial material.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences astronomy stellar astronomy white dwarfs
- natural sciences physical sciences astronomy physical cosmology galaxy evolution
- natural sciences physical sciences astronomy observational astronomy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CV4 8UW COVENTRY
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.