Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Comprehensive Aerodynamic-Aeroacoustic Analysis of a Trimmed Compound Helicopter

Project description

Solving the challenge of compound rotorcraft aerodynamics and aeroacoustics

Unravelling the complexities of aerodynamics in compound rotorcraft is a huge challenge for today’s engineers. Analysing the intricate aerodynamic phenomena of compound rotorcraft is crucial for developing more efficient and innovative rotorcraft designs. The EU-funded CA3TCH project aims to revolutionise aerodynamic design practices. Specifically, it will consider the full external aerodynamic behaviour, including aeroacoustics. This digital wind tunnel approach allows for high-fidelity aerodynamic investigations, coupling structural simulations and flight mechanics. The project will thus establish simulation technology that supports the efficient design and development of RACER, enabling a detailed examination of aerodynamics and aeroacoustics at different flight states. Overall, CA3TCH will significantly extend the applicability of helicopter simulations, answering critical questions regarding performance optimisation, safe operation, flight mechanics, and handling qualities.

Objective

CA³TCH considers the full external aerodynamic behaviour of a compound rotorcraft to be developed. Aerodynamics -- and aeroacoustics as well -- have to be investigated by full-featured simulations including coupling to structural simulation and flight mechanics. This “Digital Wind Tunnel” approach examines the performance of the projected aircraft long before first hardware exists. This allows to differentiate various alternatives as well as to drive the design process according to the detailed analysis of the flow field.

The primary goal of the project is to establish the simulation technology required to support productively the aerodynamic design and development of LifeRCraft, from rough estimates to detailed design and analysis at different flight states, until the point of first flight. Additionally, beyond the specific economic application to this compound configuration, the project will significantly improve the ability of helicopter simulations to answer particular questions in the development process, regarding aerodynamic or aeroacoustic optimisation, flight mechanics properties and even handling qualities to a certain extent. Publication and dissemination efforts will spread this enhanced capability to related areas, from fixed wings to wind turbines, just to name a few.

CA³TCH starts with some necessary tool enhancements and continues with the application to increasingly complex, detailed and refined configuration models. Afterwards, not only large-scale simulations will be run, rather a very large part of the project´s added value consists of the rigorous analysis and interpretation of the results obtained.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CS2-RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-CS2-CFP01-2014-01

See all projects funded under this call

Coordinator

UNIVERSITY OF STUTTGART
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 799 000,00
Address
KEPLERSTRASSE 7
70174 Stuttgart
Germany

See on map

Region
Baden-Württemberg Stuttgart Stuttgart, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 799 000,00
My booklet 0 0