Project description
Exploring the exotic properties of dipolar molecules in carbon nanotubes
Transport phenomena in hollow tubes are relevant on all scales, from storm water in pipes and blood in vessels to molecules in nanofluidic devices. Diameter plays a key role in modulating these transport processes. Characterising the diameter-dependent filling of hollow carbon nanotubes (CNTs) will accelerate the development of novel devices. The European Research Council-funded ORDERin1D project will address this challenge, focusing on the unique head-to-tail alignment of dipolar molecules in CNTs. These arrangements yield molecular directional properties that could lead to pioneering applications in nanophotonics. The insights gained could pave the way for ultra-selective filtering membranes, sensors, nanofluidic devices, and nanohybrids with unprecedented control over structural order at the molecular scale.
Objective
The hollow structure of carbon nanotubes (CNTs) with a wide range of diameters forms an ideal one-dimensional host system to study restricted diameter-dependent molecular transport and to achieve unique polar molecular order. For the ORDERin1D project, I will capitalize on my recent breakthroughs in the processing, filling, chiral sorting and high-resolution spectroscopic characterization of empty and filled CNTs, aiming for a diameter-dependent characterization of the filling with various molecules, which will pave the way for the rational design of ultraselective filtermembranes, sensors, nanofluidic devices and nanohybrids with unseen control over the structural order at the molecular scale. In particular, I recently found that dipolar molecules naturally align head-to-tail into a polar array inside the CNTs, after which their molecular directional properties such as their dipole moment and second-order nonlinear optical responses add up coherently, groundbreaking for the development of nanophotonics applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- engineering and technology chemical engineering separation technologies desalination reverse osmosis
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology nanotechnology nanophotonics
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2000 Antwerpen
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.