Objective
CRISPR-Cas loci are the adaptive immune system of archaea and bacteria. They can capture pieces of invading DNA and use this information to degrade target DNA through the action of RNA-guided nucleases. The consequences of DNA cleavage by Cas nucleases, i.e. how breaks are processed and whether they can be repaired, remains to be investigated. A better understanding of the interplay between DNA repair and CRISPR-Cas is critical both to shed light on the evolution and biology of these fascinating systems and for the development of biotechnological tools based on Cas nucleases. CRISPR systems have indeed become a popular tool to edit Eukaryotic genomes. The strategies employed take advantage of different DNA repair pathways to introduce mutations upon DNA cleavage. In bacteria however, the introduction of breaks by Cas nucleases in the chromosome has been described to kill the cell. Preliminary data indicates that this might not always be the case and that some DNA repair pathways could compete with CRISPR immunity allowing cells to survive. Using a combination of bioinformatics and genetics approaches we will investigate the interplay between CRISPR and DNA repair in bacteria with a particular focus on the widely used CRISPR-Cas9 system. The knowledge gained from this study will then help us develop novel tools for bacterial genome engineering. In particular we will introduce a NHEJ pathway in E.coli making it possible to perform CRISPR knockout screens. Finally using CRISPR libraries and multiplexed targeting, we will generate for the first time all combinations of pair-wise gene knockouts in an organism, a task that for now remains elusive, even for large consortiums and with the use of automation. This will enable to decipher genome-scale genetic interaction networks, an important step for our understanding of bacteria as a system.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences medical biotechnology genetic engineering gene therapy
- natural sciences biological sciences microbiology bacteriology
- natural sciences biological sciences genetics DNA
- medical and health sciences basic medicine immunology
- medical and health sciences basic medicine pharmacology and pharmacy drug resistance antibiotic resistance
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75724 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.