Objective
Cardiovascular diseases including myocardial infarction (MI), which entails the irreversible loss of heart muscle tissue, constitute a major socio-economic burden in global healthcare. With whole organ transplantation as the only treatment option for end-stage heart failure, MI patients could particularly benefit from advanced cell therapies aimed at the functional reconstitution of damaged hearts. Human induced pluripotent stem cells (hiPSCs) can be derived by reprogramming patients’ somatic cells. In contrast to adult (stem) cells e.g. from blood, bone marrow or the heart, hiPSCs have unlimited expandability and differentiation potential into all relevant cell types including cardiomyocytes, endothelial cells, pericytes and connective tissue-forming cells, making them highly attractive as a universal cell source for organ repair. However, technologies for the robust therapeutic scale production of hiPSC-derived progenies in line with GMP standards and at reasonable cost are currently lacking.
TECHNOBEAT’s ultimate objectives are 1) to advance therapeutic scale cell production through innovative bioreactor technologies and novel cell monitoring tools, and 2) to develop regulatory compliant bioprocessing of innovative iPSC-based cardiac µ-tissue. The clinical translation of cardiac µ-tissue will require 3) the development and application of tools for improved cell delivery and longitudinal in vivo monitoring of cell grafts, and 4) proof-of-concept for safety and functional integration in physiologically relevant preclinical models of cellular heart repair.
Through its interdisciplinary excellence, TECHNOBEAT’s consortium of leading European stem cell researchers, clinicians, tissue-, bioprocess-, and technical- engineers in industry and academia is ideally positioned to address these ambitious objectives. It will provide new treatment options for suffering patients and increase Europe’s attractiveness as a hub for innovative medical technologies.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyenvironmental biotechnologybioremediationbioreactors
- medical and health sciencesmedical biotechnologytissue engineering
- medical and health sciencesmedical biotechnologycells technologiesstem cells
- medical and health sciencesclinical medicinecardiologycardiovascular diseases
- medical and health sciencesclinical medicinetransplantation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Call for proposal
(opens in new window) H2020-PHC-2014-2015
See other projects for this callSub call
H2020-PHC-2015-two-stage
Funding Scheme
RIA - Research and Innovation actionCoordinator
30625 Hannover
Germany