Objective
Speleothems (cave deposits, e.g. stalagmites) represent unique terrestrial archives that allow for accurately dated, high-resolution (often annual), continuous and long (many millennia) climate reconstructions. Such records are vital for understanding how climate varies and how our environments respond on seasonal to millennial timescales. However, current speleothem studies can only make qualitative inferences about climate parameters – i.e. they can tell us the direction of change (warmer, drier, etc.) but not the amount of change (how warm? how dry?). Quantitative information is crucial to make speleothem-based data more useful to climate modellers and policy makers.
QUEST (QUantitative palaeoEnvironments from SpeleoThems) will develop new techniques for extracting quantitative information from speleothems and link field and laboratory experiments on water/mineral chemistry with innovative physical and numerical analyses on speleothems. The combination of these techniques, based on physical and chemical properties and statistical methods, will allow us to deliver quantitative reconstructions of two key parameters: hydrology and temperature. We will test our methods using speleothems from Australasia, a region vulnerable to El Niño-Southern Oscillation (ENSO) variability. At present, there is a relative dearth of millennial-scale palaeoclimate data from this region.
Our team members come from a variety of backgrounds including environmental chemistry, environmental mineral magnetism, and numerical data analysis. Each group within the team has already begun developing innovative methods for palaeoclimate reconstruction within their own subfield, but this project will be the first time these methods are combined and applied collectively to speleothems. Our combination of interdisciplinary expertise, state-of-the-art instrumentation, and novel techniques means that we are ideally placed to develop quantitative climate records from speleothems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences data science
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes el niño
- natural sciences earth and related environmental sciences geology geomorphology speleology
- natural sciences mathematics applied mathematics numerical analysis
- natural sciences earth and related environmental sciences geology petrology petrography
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.3. - Stimulating innovation by means of cross-fertilisation of knowledge
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-RISE - Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-RISE-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN Cambridge
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.