Objective
The development of advanced photon-based technologies offers exciting promises in fields of crucial importance for the development of sustainable societies such as energy and food management, security and health care. Innovative photonic devices will however reveal their true potential if we can deploy their functionalities not only on rigid wafers, but also over large-area, flexible and stretchable substrates. Indeed, providing energy harvesting, sensing, or stimulating abilities over windows, screens, food packages, wearable textiles, or even biological tissues will be invaluable technological breakthroughs. Today, however, conventional fabrication approaches remain difficult to scale to large area, and are not well adapted to the mechanical and topological requirements of non-rigid and curved substrates. In FLOWTONICS, we propose innovative materials processing approaches and device architectures to enable the simple and scalable fabrication of nano-structured photonic systems compatible with flexible and stretchable substrates. Our strategy is to direct the flow of optical materials through an innovative and thus far unexplored exploitation of the solid-state dewetting and thermal drawing processes. Our objectives are three-fold: (1) Study and demonstrate, for the first time, the strong potential of the dewetting of chalcogenide glasses layers for the fabrication of large area photonic devices; (2) Show that dewetting can also be exploited to realize photonic architectures onto engineered, nano-imprinted flexible and stretchable polymer substrates; (3) Demonstrate, for the first time, the use of the thermal drawing process as a novel tool to realize advanced flexible and stretchable photonic ribbons and fibers. These novel approaches can contribute to game-changing scientific and technological advances for the sustainable management of our resources and to meet our growing health care needs, putting Europe at the forefront of innovation in these crucial areas.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering fibers
- engineering and technology materials engineering textiles
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
- engineering and technology materials engineering nanocomposites
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1015 LAUSANNE
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.