Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

BioActive Coatings in multi-well cell culture plates

Objective

Cell culture is a method used for growing living cells artificially outside their natural environment under controlled conditions. It is used for a large range of applications such as studies of cellular functions, drug discovery, biotechnologies and regenerative medicine. Cell culture in vitro is generally performed on plastic substrates, especially multi-well plates or Petri dishes that are made of polystyrene, a very stiff and synthetic material. This stiff substrate can bias the experimental results and mask cellular responses. These culture conditions contrast drastically with the conditions of the cellular microenvironment in vivo, where the cells are surrounded by a soft extra-cellular matrix (ECM) that provides mechanical and biochemical signals.
Bioengineers have recently made developments on hydrogels and surface coatings that better mimic the natural ECM and present: 1) a controlled stiffness in a more physiological range than plastic dishes and 2) active biomolecules (peptides, growth factors) that can target specific receptors and trigger cellular responses.
However, to date, there are still very few commercially available alternatives to the traditional plastic plates for high throughput cell culture in more relevant conditions. Hydrogel-coated plates have begun to be developed but lack stability in time and are highly sensitive to hydration.
The aim of the BioActiveCoatings project is to bring to the market surface-coated plates with a control over thickness, stiffness and presentation of bioactive molecules (peptide, growth factor). This innovative strategy based on the layer-by-layer assembly of biopolymers will be implemented on multi-well plates, which are compatible with biological assays and optical microscopy. The Lbl-coated multi-well plates will broaden the application of cell culture plates in research and industry for fundamental biological studies, production of biological molecules, diagnosis and regenerative medicine.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-PoC

See all projects funded under this call

Host institution

INSTITUT POLYTECHNIQUE DE GRENOBLE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 126 633,00
Address
AVENUE FELIX VIALLET 46
38031 GRENOBLE CEDEX 1
France

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 149 998,00

Beneficiaries (2)

My booklet 0 0