Objective
Cooling is essential for food and drinks, medicine, electronics and thermal comfort. Thermal changes due to pressure-driven phase transitions in fluids have long been used in vapour compression systems to achieve continuous refrigeration and air conditioning, but their energy efficiency is relatively low, and the working fluids that are employed harm the environment when released to the atmosphere. More recently, the discovery of large thermal changes due to pressure-driven phase transitions in magnetic solids has led to suggestions for environmentally friendly solid-state cooling applications. However, for this new cooling technology to succeed, it is still necessary to find suitable barocaloric (BC) materials that satisfy the demanding requirements set by applications, namely very large thermal changes in inexpensive materials that occur near room temperature in response to small applied pressures.
I aim to develop new BC materials by exploiting phase transitions in non-magnetic solids whose structural and thermal properties are strongly coupled, namely ferroelectric salts, molecular crystals and hybrid materials. These materials are normally made from cheap abundant elements, and display very large latent heats and volume changes at structural phase transitions, which make them ideal candidates to exhibit extremely large BC effects that outperform those observed in state-of-the-art BC magnetic materials, and that match applications.
My unique approach combines: i) materials science to identify materials with outstanding BC performance, ii) advanced experimental techniques to explore and exploit these novel materials, iii) materials engineering to create new composite materials with enhanced BC properties, and iv) fabrication of BC devices, using insight gained from modelling of materials and device parameters. If successful, my ambitious strategy will culminate in revolutionary solid-state cooling devices that are environmentally friendly and energy efficient.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN Cambridge
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.