Objective
My goal is to overcome the two-most pressing theoretical challenges necessary to build large-scale quantum communication networks: routing and designing protocols that use them to solve useful tasks. In two interconnected projects, I will devise entirely new concepts, models and mathematical methods that take into account the intricacies of real world quantum devices that can operate on only very few quantum bits at a time.
(1) Security: I will prove the security of quantum cryptographic protocols under realistic conditions, and implement them in collaboration with experimentalists. I will develop a general theory and practical tests for the security of multi-party cryptographic primitives using untrusted quantum devices. This is mathematically challenging due to the possibility of entanglement between the devices.
(2) Routing: I will initiate the systematic study of effective routing in a quantum communication network. This is necessary for quantum networks to grow in scale. Quantum entanglement offers very different means of routing messages than is possible in classical networks, and poses genuinely new challenges to computer science. I will design routing protocols in a multi-node quantum network of potentially different physical implementations, i.e. hybrid networks, that will establish a new line of research in my field.
Quantum networks are still in their infancy, even though quantum communication offers unparalleled advantages that are provably impossible using classical communication. Building a quantum network is an interdisciplinary effort bringing together computer science, physics, and engineering. I am in a unique position in computer science, since I have recently joined QuTech where I have direct access to small quantum devices - bringing me tantalizingly close to seeing such networks realized. As with early classical networks, it is difficult to predict where our journey will end, but my research will join theory and experiment to move forward.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences internet
- natural sciences physical sciences quantum physics
- natural sciences computer and information sciences computer security cryptography
- natural sciences computer and information sciences software software development
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2628 CN DELFT
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.