Objective
Volcanic eruptions occur with a frequency that is inversely proportional to their magnitude. Datasets of natural volcanic events, currently used to determine the recurrence rate of volcanic eruptions are intrinsically biased. Combining physical modelling of processes with detailed statistical analysis has been demonstrated essential for assessing reliably the recurrence rate of natural hazards, such as floods and earthquakes. This would be the first attempt to apply a similar, integrated approach to explosive volcanic eruptions.
The high-gain final target of FEVER is to produce a physically based statistical model able to ForEcast the recurrence rate of Volcanic Eruptions both at regional and global scale. This is the first project of this kind and consequently involves a significant risk. Because 500 million people live in proximity of volcanoes and eruptions have a significant social and economical impact, forecasting the recurrence rate of volcanic eruption remains a great challenge in Science.
This project builds on two main directions of my research: a) Thermo-mechanical and statistical modelling targeting the identification of the main physical factors controlling the recurrence rate of volcanic eruptions. We showed that the flux of magma from depth directly controls the magnitude of the largest possible eruptions. Thus, b) we developed a novel method to determine such magma fluxes. These two lines of research combine perfectly in FEVER and will be integrated to answer questions such as: What is the probability of an eruption similar to the Tambora 1815 to occur in the next 100 years on Earth or in Europe? What is the largest physically possible eruption that can occur in Europe?
The high-gain target of FEVER is to mitigate the impact of volcanic eruptions on our society, by producing research of interest for governmental agencies dealing with location of strategic infrastructures, and for businesses such as aviation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences earth and related environmental sciences physical geography glaciology glacial geology
- natural sciences earth and related environmental sciences geology volcanology
- natural sciences physical sciences astronomy planetary sciences planets
- natural sciences earth and related environmental sciences physical geography natural disasters
- natural sciences mathematics applied mathematics statistics and probability
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1211 Geneve
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.