Objective
Sex chromosomes often show extensive areas of suppressed recombination and cytological differentiation, a well-documented phenomenon in animals and plants. Lack of recombination is expected to limit the efficacy of natural selection, leading to degeneration in gene content. Similarly, fungal mating-type chromosomes, which are responsible for controlling compatibility during mating, can display patterns of suppressed recombination encompassing up to 90% of the chromosome length. The mechanisms responsible for lack of recombination and consequent degeneration remain unclear.
Here, I propose to use comparative genomics to investigate the patterns and underlying mechanisms involved in recombination suppression and genomic degeneration in Microbotryum, a model fungal system with a range of dimorphic mating-type chromosomes. I will complement the currently available high-quality genome assemblies for twenty species in the genus with three outgroups, which will allow to polarize all genomic data. I will then use the genomic dataset to: 1) test hypotheses on the origin of recombination suppression in fungal mating-type chromosomes; 2) study the evolution of non-recombining regions in fungal mating-type chromosomes, e.g. their size and age, and the existence of evolutionary strata; and 3) study the patterns and mechanisms of genomic degeneration in non-recombining regions, namely non-synonymous substitution accumulation, transposable elements, disrupted genes, and non-optimal codon usage.
Results will not only shed light on the origins and consequences of suppressed recombination and genome degradation in fungal mating-type chromosomes, but will also yield unprecedented insights into the dynamics of sexual reproduction in eukaryotes and contribute for a unified view of the evolution of dimorphic chromosomes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesbiological morphologycomparative morphology
- natural sciencesbiological sciencesmicrobiologymycology
- natural sciencesbiological sciencesgeneticschromosomes
- natural sciencesbiological sciencesgeneticsgenomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback.
You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Funding Scheme
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinator
91190 Gif-Sur-Yvette
France