Objective
Organic electronics which exploits charges (electrons or holes) of π-conjugated molecules/polymers has garnered attention in the past decade due to the low cost, ease of processability and most importantly the flexibility to tune the electronic properties through chemical synthesis. In addition to charge, spin as a quantum number provides exciting opportunities to store data in memory devices, in spin filters and spin-based organic light-emitting diodes. Typically in spintronic devices, switching of the magnetism of one of the ferromagnetic layers is required to attain spin-selectivity. Recent works have demonstrated high (>60%) spin-selectivity in organized chiral double-stranded deoxyribonucleic acid (DNA) without the use of magnetic materials. The high spin-selectivity was attributed to the creation of chiral field in which the electron-transport takes place through DNAs. It is to be noted that the organization of DNA strands is pivotal in achieving high spin-selectivity. Presently, the main focus is on bio-inspired molecules such as peptides and DNAs. Due to the versatility and processability of organic semiconductors, they are ideal candidates for obtaining chiral electron flow leading to functional organic spintronic devices without ferromagnets. Thus the present proposal aims at design, synthesis and characterization of chiral π-conjugated oligomers and polymers with ordered supramolecular organization on surfaces as testbeds for spin-selective electron transport. Chiral fluorene oligomers/polymers are known to form cholesteric liquid crystal phases on surfaces. Based on this, our design includes chiral fluorene based oligomers and polymers attached with pendant acid groups to anchor on surfaces to obtain chiral supramolecular organization desired for the electron-transport. This project will be the first demonstration of chiral-spin selectivity in synthetic self-assembled structures and will pave way for a plethora of spin-based applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences mathematics pure mathematics topology
- natural sciences chemical sciences polymer sciences
- natural sciences chemical sciences physical chemistry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5612 AE Eindhoven
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.