Objective
Fluorescence microscopy is a powerful tool for exploring biomolecules in cells and tissues, especially with the advent of super-resolution techniques. To better understand key processes such as cell differentiation and disease progression, it is crucial to investigate the abundance, localization and mutual interactions of crucial cellular components such as nucleic acids and proteins. Unraveling their complex interplay in whole signaling networks is necessary to investigate cellular responses to stimuli. However, currently available characterization techniques are either limited by low multiplexing capability (e.g. fluorescence microscopy) or lack localization information (e.g. mass spectrometry). Despite the immense biological and clinical relevance of understanding network-wide changes, the lack of a technological platform to image, identify and quantify a multitude of key protein networks at high spatial resolution in tissues impedes our understanding of the molecular basis of health and disease.
I aim to solve this pressing issue and revolutionize fluorescence microscopy using tools from DNA Nanotechnology with transformative potential to positively answer the question: Can we localize and identify each protein or nucleic acid molecule in a complex tissue microenvironment?
The approach is based on my recently developed DNA- and Exchange-PAINT techniques. To push the envelope of what’s technically possible I will first build a lattice light-sheet microscope for deep tissue high throughput DNA-PAINT imaging. Second, I will develop novel nanobody- and aptamer-based labeling approaches in combination with molecular barcoding and automated multiplexed image acquisition and processing.
With these disruptive and transformative tools, I will investigate whole signaling cascades at once in single cells and whole tissues, thus enabling quantitative imaging transcriptomics and proteomics with highest spatial resolution.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- natural sciences biological sciences biochemistry biomolecules nucleic acids
- natural sciences biological sciences genetics DNA
- natural sciences physical sciences optics microscopy super resolution microscopy
- natural sciences chemical sciences analytical chemistry mass spectrometry
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.