Objective
In the development of new smart phones and tablets, there is a market requirement for alternatives to transparent conductive films (TCF) based on indium tin oxide (ITO). For ITO, the combination of conductive and optical properties is not good enough for many new products, and additionally ITO is brittle and can crack when repeatedly flexed in a touch panel.
The leading contender for replacing ITO in TCF is silver nanowires and NANOGAP is the leading European manufacturer of nanowires. With a unique patented technology and resultant freedom to operate, NANOGAP has an excellent competive position in a growing market
Based on NANOGAP’s technology and freedom to operate NANOGAP has commercial contracts in place with two global companies. In order grow the customer base and sustain this business opportunity NANOGAP must further enhance its technology, improving product performance to levels demanded by the industry (lower sheet resistance, higher light transmission, lower haze) while lowering costs. This project addresses these requirements by using new methods to both study and optimise the synthesis reaction and through developing new improved post-synthesis purification methods. Additionally, during the feasibility phase of this project, a market study will be performed on verifying new market opportunities for the new improved low cost products arising from this project. The key technical innovations will be around real time monitoring of very sensitive reaction conditions coupled to real time kinetic modelling. It is envisaged that this technique will form the basis of future in-line quality control procedures. Also, very importantly, new cross flow filtration techniques will be assessed for post-synthesis purification with particular interest in bespoke membrane development. The expected results from the technical innovation will be thinner longer nanowires, produced at higher purity and lower cost. This will translate to meeting the customer demands
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology mechanical engineering thermodynamic engineering
- natural sciences chemical sciences inorganic chemistry transition metals
- engineering and technology materials engineering coating and films
- engineering and technology nanotechnology nano-materials
- engineering and technology environmental engineering energy and fuels renewable energy solar energy photovoltaic
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.2. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.3.1. - Mainstreaming SME support, especially through a dedicated instrument
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
SME-1 - SME instrument phase 1
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SMEInst-2014-2015
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
15895 Ames A Coruna
Spain
The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.