Project description
Innovative non-linear signal representation framework could enhance cosmic exploration
Astrophysics has reached a turning point, facing complex data analysis challenges that require the development of advanced signal processing methods. Sparse signal representations have been instrumental in creating a full-sky map of the cosmic microwave background from Planck data. However, standard linear signal processing approaches are limited in their ability to capture the inherently non-linear properties of physical data. Funded by the European Research Council, the LENA project aims to address these limitations by studying a new non-linear signal representation framework and developing numerical methods to exploit non-linear models. Project results will have important implications for astrophysical data analysis, specifically within the Planck mission and the European radio interferometer LOFAR. Their impact is expected to be similar to that made using sparsity in the field.
Objective
Astrophysics has arrived to a turning point where the scientific exploitation of data requires overcoming challenging analysis issues, which mandates the development of advanced signal processing methods. In this context, sparsity and sparse signal representations have played a prominent role in astrophysics. Indeed, thanks to sparsity, an extremely clean full-sky map of the Cosmic Microwave Background (CMB) has been derived from the Planck data [Bobin14], a European space mission that observes the sky in the microwave wavelengths. This led to a noticeable breakthrough: we showed that the large-scale statistical studies of the CMB can be performed without having to mask the galactic centre anymore thanks to the achieved high quality component separation [Rassat14].
Despite the undeniable success of sparsity, standard linear signal processing approaches are too simplistic to capture the intrinsically non-linear properties of physical data. For instance, the analysis of the Planck data in polarization requires new sparse representations to finely capture the properties of polarization vector fields (e.g. rotation invariance), which cannot be tackled by linear approaches. Shifting from the linear to the non-linear signal representation paradigm is an emerging area in signal processing, which builds upon new connections with fields such as deep learning [Mallat13].
Inspired by these active and fertile connections, the LENA project will: i) study a new non-linear signal representation framework to design non-linear models that can account for the underlying physics, and ii) develop new numerical methods that can exploit these models. We will further demonstrate the impact of the developed models and algorithms to tackle data analysis challenges in the scope of the Planck mission and the European radio-interferometer LOFAR. We expect the results of the LENA project to impact astrophysical data analysis as significantly as deploying sparsity to the field has achieved.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences data science
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- natural sciences physical sciences astronomy astrophysics dark matter
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- natural sciences mathematics applied mathematics numerical analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.