Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Dynamic Microfluidic Structures for Analysis of Single Cell Systems

Objective

The interaction and communication between individual cells plays a central role in virtually all fields of biology, from the cooperative work of cells in the immune system, through the differentiation of stem cells, and to the proliferation of cancer cells. In recent years it has been shown that these processes are fundamentally coupled to cell-to-cell heterogeneity and variability. Despite the fact that studying cellular ensembles obscures these fundamental biological processes, most current studies consider cell populations, largely due to technological limitations in the ability to dynamically compartmentalize, manipulate, and analyze single cells.

We propose to develop and demonstrate a new concept for a single-cell-level bioanalytical workspace that is dynamically configurable in real time. Making use of electrokinetically driven surface deformations, a physical mechanism recently invented in my lab, the MetamorphChip will be able to dynamically modify its own microfluidic structure, thus allowing complete freedom in the manipulation of individual cells and their environment, in real time.

The project is divided into 5 aims:

1. Deepening our physical understanding of electrokinetically driven surface deformations, and using it to create a “library” of fundamental dynamic elements.
2. Designing, building, and testing the first prototype MetamorphChip.
3. Demonstrating the ability of the MetamorphChip to manipulate single cells and their microenvironment.
4. Performing advanced biochemical analysis on single cells using the chip.
5. Demonstrating the use of the MetamorphChip for experimental study of immune cell interaction.

I strongly believe that successful implementation of this project would fundamentally change the way in which single-cell experiments are conceived and performed.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-STG

See all projects funded under this call

Host institution

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 744 056,00
Address
SENATE BUILDING TECHNION CITY
32000 Haifa
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 744 056,00

Beneficiaries (1)

My booklet 0 0