Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The Role of Local Protein Degradation in Neurotransmitter Release and Homeostatic Plasticity

Objective

While many neurons live for decades, the proteins that determine neural function have half-lives of hours to weeks. On the one hand, this allows for plastic changes during development and learning. On the other hand, this poses the question of how stable neural function can be achieved and maintained at all. Several neurological diseases, such as epilepsy or migraine, have been linked to uncontrolled neural function. However, the molecular mechanisms that stabilize nervous system function are poorly understood. The major site of regulation of neural activity is the chemical synapse. Synaptic function is tightly linked to the specific composition and abundance of proteins at synapses. However, the molecular pathways underlying the homeostatic control of protein levels at synapses, henceforth called synaptic proteostasis, are largely unknown.

The main objective of this proposal is to unravel the molecular signaling systems underlying synaptic proteostasis through local protein degradation, and its role in regulating a key step in synaptic transmission: neurotransmitter release. We propose to systematically analyze Ubiquitin Proteasome System (UPS)-dependent modulation of synaptic transmission in mutants of all major classes of synaptic genes, with a focus on homeostatic plasticity genes. This will be realized by employing a unique combination of forward genetics and electrophysiological analysis of synaptic transmission in Drosophila. Novel genetically-encoded probes will be used and developed to study synaptic transmission and protein degradation, and to acutely perturb protein function. Finally, this new information will be translated into the mammalian CNS by studying UPS-dependent modulation of release at a CNS synapse that allows for a detailed biophysical description of this phenomenon. Together, this approach should be ideally suited to dissect the molecular signaling systems underlying presynaptic proteostasis, and its role in neural physiology and pathology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2015-STG

See all projects funded under this call

Host institution

UNIVERSITAT ZURICH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 489 340,95
Address
RAMISTRASSE 71
8006 Zurich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 489 340,95

Beneficiaries (1)

My booklet 0 0