Objective
The perfect execution of a voluntary movement requires the appropriate integration of current bodily state, sensory input and desired outcome. To assure that this motor output becomes and remains appropriate, the brain needs to learn from the result of previous outputs. The cerebellum plays a central role in sensorimotor integration, yet -despite decades of studies- there is no generally excepted theory for cerebellar functioning. I recently demonstrated that cerebellar modules, identified based on anatomical connectivity and gene expression, differ distinctly in spike activity properties. It is my long-term goal to identify the ontogeny of anatomical and physiological differences between modules, and their functional consequences. My hypothesis is that these differences can explain existing controversies, and unify contradicting results into one central theory.
To this end, I have designed three key objectives. First, I will identify the development of connectivity and activity patterns at the input stage of the cerebellar cortex in relation to the cerebellar modules (key objective A). Next, I will relate the differences in gene expression levels between modules to differences in basal activity and strength of plasticity mechanisms in juvenile mice (key objective B). Finally, I will determine how module specific output develops in relation to behavior and what the effect of module specific mutations is on cerebellum-dependent motor tasks and higher order functions (key objective C).
Ultimately, the combined results of all key objectives will reveal how distinct difference between cerebellar modules develop, and how this ensemble ensures proper cerebellar information processing for optimal coordination of timing and force of movements. Combined with the growing body of evidence for a cerebellar role in higher order brain functions and neurodevelopmental disorders, a unifying theory would be fundamental for understanding how the juvenile brain develops.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences neurobiology cognitive neuroscience
- medical and health sciences basic medicine anatomy and morphology
- natural sciences physical sciences optics microscopy
- natural sciences biological sciences genetics mutation
- natural sciences computer and information sciences data science data processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2015-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3015 GD Rotterdam
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.